Dependence of Low Frequency Functional Connectivity
نویسنده
چکیده
Resting state low frequency (<0.08 Hz) fluctuations in MR timecourses that are temporally correlated between functionally related areas have been observed in recent studies. These fluctuations have been assumed to arise from spontaneous blood oxygenation level-dependent (BOLD) oscillations. This work examines the T*2 characteristics of the low frequency fluctuations (functional connectivity) and compares them to those of task activation induced signal changes. Multi-echo spiral data were fit using a mono-exponential decay model to generate T*2 and intensity (I0) parameter timecourses. Resultant correlation maps show that both functional connectivity and BOLD activation modulate T*2, not I0. Regression analysis also finds that both have a linear dependence on echo time. Thus, functional connectivity and task activation MR signal changes appear to arise from the same BOLDrelated origins. © 2002 Elsevier Science (USA)
منابع مشابه
Time-varying spectral power of resting-state fMRI networks reveal cross-frequency dependence in dynamic connectivity
Brain oscillations and synchronicity among brain regions (brain connectivity) have been studied in resting-state (RS) and task-induced settings. RS-connectivity which captures brain functional integration during an unconstrained state is shown to vary with the frequency of oscillations. Indeed, high temporal resolution modalities have demonstrated both between and cross-frequency connectivity s...
متن کاملComputer-Aided Tinnitus Detection based on Brain Network Analysis of EEG Functional Connectivity
Background: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation and disruption of the brain net...
متن کاملTinnitus Identification based on Brain Network Analysis of EEG Functional Connectivity
Introduction: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation of the brain...
متن کاملBrain Functional Connectivity Changes During Learning of Time Discrimination
The human brain is a complex system consist of connected nerve cells that adapts with and learn from the environment by changing its regional activities. Synchrony between these regional activities called functional network changes during the life, and with learning of new skills. Time perception and interval discrimination are among the most necessary skills for the human being to perceive mot...
متن کاملThe frequency dimension of fMRI dynamic connectivity: Network connectivity, functional hubs and integration in the resting brain
The large-scale functional MRI connectome of the human brain is composed of multiple resting-state networks (RSNs). However, the network dynamics, such as integration and segregation between and within RSNs is largely unknown. To address this question we created high-resolution "frequency graphlets", connectivity matrices derived across the low-frequency spectrum of the BOLD fMRI resting-state ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001